Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks.

نویسندگان

  • Emrah Tümer
  • Angelika Bröer
  • Sarojini Balkrishna
  • Torsten Jülich
  • Stefan Bröer
چکیده

Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using the Slc6a19 gene as an example, encoding the neutral amino acid transporter B(0)AT1, we studied regulation of the gene by transcription factors and epigenetic factors in the intestine. To investigate this question, we used a fractionation method to separate mature enterocytes from crypt cells and analyzed gene expression. Transcription factors HNF1a and HNF4a activate transcription of the Slc6a19 gene in villus enterocytes, whereas high levels of SOX9 repress expression in the crypts. CpG dinucleotides in the proximal promoter were highly methylated in the crypt and fully de-methylated in the villus. Furthermore, histone modification H3K27Ac, indicating an active promoter, was prevalent in villus cells but barely detectable in crypt cells. The results suggest that Slc6a19 expression in the intestine is regulated at three different levels involving promoter methylation, histone modification, and opposing transcription factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse.

Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutat...

متن کامل

Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1

The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute ca...

متن کامل

Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

OBJECTIVE Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model...

متن کامل

Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells.

Most neutral l-amino acid acids are transported actively across the luminal brush-border membrane of small intestine and kidney proximal tubule epithelial cells by a Na(+) cotransport system named B(0) that has been recently molecularly identified (B(0)AT1, SLC6A19). We show here that the opossum kidney-derived cell line OK also displays a Na(+)-dependent B(0)-type neutral l-amino acid transpor...

متن کامل

Luminal leptin inhibits L-glutamine transport in rat small intestine: involvement of ASCT2 and B0AT1.

L-glutamine is the primary metabolic fuel for enterocytes. Glutamine from the diet is transported into the absorptive cells by two sodium-dependent neutral amino acid transporters present at the apical membrane: ASCT2/SLC1A5 and B(0)AT1/SLC6A19. We have demonstrated that leptin is secreted into the stomach lumen after a meal and modulates the transport of sugars after binding to its receptors l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 47  شماره 

صفحات  -

تاریخ انتشار 2013